
 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 1 of 22

Programmers Guide

for

INFINITY® USB SMART

SDK 1.00

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 2 of 22

Introduction
The Infinity® USB Smart SDK provides a simple programming interface for the Infinity USB
Smart. The SDK makes it easy to access the ISO7816 (phoenix), SLE and I2C memory
interface of the Infinity USB Smart.

System overview

Figure 1. System overview

Typical software that uses the SDK contains a general part that handles finding (enumerate),
opening and initialization of the device and another part that handles the phoenix/SLE or I2C
communications.

The general part should use the functions named INFSMART_XXX to find, open and setup the
device. The software should then use the INFSMART_Phoenix_XXX functions to setup the UART
of the device and communicate with the card through the phoenix interface or use the I2C or
SLE functions.

The phoenix UART consists of a double-buffered 256 byte receive buffer to handle incoming
data from the card. The phoenix part of the SDK needs to empty this buffer before overflow
occurs and this is done by using the INFSMART_Phoenix_Read or
INFSMART_Phoenix_BytesInFifo. The BytesInFifo function, copies data from the device to the
internal 10KB receive FIFO (located in the SDK-DLL) and then returns the total amount of data
available. If 256 bytes FIFO is not enough you should call INFSMART_Phoenix_Read
continuously to empty the device fifo into its internal 10KB FIFO.

Communication
In general, the user initiates communication with the Infinity USB Smart by making a call to
INFSMART_GetNumDevices. This call will return the number of devices connected and is used
as a range when calling INFSMART_OpenDeviceFromNum. The handle returned from
INFSMART_OpenDeviceFromNum should be used in all subsequent calls to the SDK. Once the
device is opened phoenix mode can be enabled using INFSMART_Phoenix_Enable.

Data I/O through phoenix mode is performed using INFSMART_Phoenix_Write and
INFSMART_Phoenix_Read functions. When phoenix mode operation is complete, phoenix mode
is disabled by a call to INFSMART_Phoenix_Disable. When all I/O operations are complete, the
device is closed by a call to INFSMART_Close.

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 3 of 22

Supporting multiple devices
This SDK supports multiple Infinity USB Smart connected simultaneously. Making support for
multiple programmers in your software is more advanced than supporting only one device.
Before you begin using this SDK you should consider if you need to support multiple devices
simultaneously. If you wish to support only one device (which is only needed in most cases),
you would normally use a 0 for the parameter dwDevice in INFSMART_OpenDeviceFromNum,
which refers to the first connected device. If another instance of your application is opened you
could make support for multiple devices by not always using device 0, but instead use the first
available closed device.

SDK functions
The SDK is divided into 5 categories:

• General
The general functions are used to find, open, and close devices, handle timeout values
of read and write operations, to set the state of the LED, and detect if any card is
inserted.

• Phoenix
The phoenix functions are used to control, read and write the ISO7816 interface. These
functions are designed to make it easy for developers of other serial-based phoenix
software to easily adapt their software to use this SDK instead.

For writing a phoenix enabled application only the above 2 categories are needed, the
next category, communications, are for more advanced users familiar with the
communication protocol of the Infinity USB Smart.

• Communications
These functions are used to read and write data directly to the Infinity USB Smart, to
flush the data buffer and to determine how many bytes are available in the read buffer.

• Synchronous communications
These functions are used for accessing SLE cards which use synchronous IO.

• I2C communications

These functions are used for accessing I2C EEproms directly.

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 4 of 22

General

INFSMART_GetSDKVersion
Returns the version of the used SDK.

Prototype:
DWORD INFSMART_GetSDKVersion();

Parameters:
 -None

Return values:
A DWORD representing the version of the used SDK. For instance 2100 for version
2.1.

INFSMART_GetNumDevices
This function returns the number of Infinity USB Smart currently connected to
the PC. If 1 device is connected lpdwNumDevices will contain the value 1 on
return.

Prototype:
SDK_STATUS INFSMART_GetNumDevices(LPDWORD lpdwNumDevices);

Parameters:

1. lpdwNumDevices: Address of a DWORD variable that will contain the number
of devices connected on return.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_NOT_FOUND (0xFF) or
SDK_INVALID_PARAMETER (0x06)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 5 of 22

INFSMART_OpenDeviceFromNum
This function opens the specified device, using a zero-indexed device number as
returned by INFSMART_GetNumDevices. If 1 device is connected you should specify
0 as dwDevice.

Prototype:
SDK_STATUS INFSMART_OpenDeviceFromNum(DWORD dwDevice, HANDLE* hDevice, LPVOID
lpDeviceString);

Parameters:

1. dwDevice: Zero-based index of the device to open. Use
INFSMART_GetNumDevices to find number of connected devices.

2. hDevice: Address of a handle which will receive the handle of the opened
device, later to be used in subsequent calls to the device.

3. lpDeviceString: Address of a buffer to be filled with a unique hardware
string identifying the unique instance of the connected device, should be
large enough to contain 256 bytes. Set to 0 if you do not wish to receive
the device string.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_NOT_FOUND (0xFF) or
SDK_INVALID_PARAMETER (0x06)

INFSMART_CloseDevice
This function closes the specified device which has previously been opened by
INFSMART_OpenDeviceFromNum.

Prototype:
SDK_STATUS INFSMART_CloseDevice(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device to close. This handle should be a handle
previously received from INFSMART_OpenDeviceFromNum.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_PARAMETER (0x06)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 6 of 22

INFSMART_SetLEDState
Sets the LED to the specified color, brightness and flash pattern (PWM).

Prototype:
SDK_STATUS INFSMART_SetLEDState(HANDLE hDevice, unsigned int R, unsigned int
G,unsigned int B, unsigned char PWMDuty, unsigned char PWMFrq);

Parameters:

1. hDevice: Handle of the device.
2. R: 16bit value specifying the amount of RED. (0x0000 = Off, 0xFFFF = On)
3. G: 16bit value specifying the amount of GREEN. (0x0000 = Off, 0xFFFF = On)
4. B: N/A
5. PWMDuty: 8bit value specifying the on/off duty cycle of the flash. (0x01 =

mostly off, 0xFE = Mostly on, 0x80 = (50% off, 50% on))
6. PWMFrq: 8bit value specifying the frequency of the flash. (0x00 = Slow,

0xFF = Fast)

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_WRITE_ERROR (0x04)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 7 of 22

INFSMART_GetCardState
Returns the state of the card switches of both the smartcard and SIM-card
connector.

Prototype:
SDK_STATUS INFSMART_GetCardState(HANDLE hDevice, LPDWORD lpdwCardstate);

Parameters:

1. hDevice: Handle of the device.
2. lpdwCardstate: Address of a DWORD which will contain the state of the card

switches.

The predefined values are:
0 – No cards inserted (CARD_NONE)
1 – Smartcard inserted (CARD_SMARTCARD)
2 – SIM-card inserted (CARD_SIMCARD)
3 – Both cards inserted (CARD_BOTH)

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01)

INFSMART_GetFirmwareVersion
Returns the version of the firmware in the programmer.

Prototype:
DWORD INFSMART_GetFirmwareVersion(HANDLE hDevice);
Parameters:

1. hDevice: Handle of the device.

Return values:
A DWORD representing the version of the firmware in the programmer. A version of
1030 indicates firmware version 1.03.

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 8 of 22

PHOENIX

INFSMART_Phoenix_Enable
Enables phoenix mode and sets the uart to the specified baud-rate and parity.
This function should be called before using any of the INFSMART_Phoenix
functions.

Prototype:
SDK_STATUS INFSMART_Phoenix_Enable(HANDLE hDevice, unsigned int baud, unsigned
int* ActualBaud, unsigned char stopbit, unsigned char parity, unsigned char
databits, unsigned int iFrq, unsigned int iCardFrq, bool updateonly);

Parameters:

1. hDevice: Handle of the device.
2. baud: Value indicating which baudrate the card uses at the specific

frequency.
3. ActualBaud: Pointer to an integer to receive the actual baudrate, the

actual baudrate may deviate from the requested.
4. stopbit: Value indication the use of stopbit.

0x00 – Short stopbit
0x01 – Long stopbit

5. parity:

0x00 – No parity
0x01 – Odd parity
0x02 – Even parity
0x03 – Mark parity
0x04 – Space parity

6. databits: Specifies the number of databits to use. 5 to 8 databits are
valid.

7. iFrq: The frequency the card expects, for instance 3579000Hz or 6000000Hz.
8. iCardFrq: The actual frequency used
9. updateonly: Specified whether just the baud-rate or other uart settings

need to be updated, or if phoenix mode needs to be enabled.

false : Default mode, enables phoenix mode with the requested values
true : Just updates the UART with the new baudrate, stopbit and parity

ISO7816 normally uses 9600bps with EVEN parity and two stopbits.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_INVALID_PARAMETER (0x06)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 9 of 22

INFSMART_Phoenix_Disable
Disables phoenix mode and returns to normal state.

Prototype:
SDK_STATUS INFSMART_Phoenix_Disable(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_PHOENIX_NOT_ENABLED (0x60)

INFSMART_Phoenix_Write
This function uses INFSMART_Write to write data to the device that is redirected
to the ISO7816 (phoenix) interface. Data is sent through the hardware UART with
the baudrate and properties specified in the INFSMART_Phoenix_Enable function.
Phoenix mode has to be enabled using INFSMART_Phoenix_Enable prior to using this
function. The device has a 256 bytes phoenix receive buffer, so do not request
more data than 256 bytes before you empty the read buffer. Each byte transmitted
will also be echoed. For example transmitting 128bytes to the card, which
replyes with a 2byte ACK will result in 130bytes of data to be read.

The function writes the specified number of bytes from the specified buffer to
the specified device. Given valid parameters, this function is blocking until
the write is successful, fails, or a timeout occurs. The write is
successful when the device has accepted all of the data. If the write fails or a
timeout occurs, SDK_WRITE_ERROR is returned.

Prototype:
SDK_STATUS INFSMART_Phoenix_Write(HANDLE hDevice, LPCVOID lpBuffer,DWORD
nNumberOfBytesToWrite, LPDWORD lpdwBytesWritten);

Parameters:

1. hDevice: Handle of the device.
2. lpBuffer: Address of a buffer of data to write.
3. nNumberOfBytesToWrite: Number of bytes to write to the device (0-4096

bytes)
4. lpdwBytesWritten: Address of a DWORD which will contain the number of

bytes actually written to the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_WRITE_ERROR (0x04) or
SDK_INVALID_REQUEST_LENGTH (0x07) or
SDK_INVALID_HANDLE (0x01) or
SDK_INVALID_PARAMETER (0x06) or
SDK_PHOENIX_NOT_ENABLED (0x60)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 10 of 22

INFSMART_Phoenix_Read
This function uses INFSMART_Read and INFSMART_Write to read data from the
device, which the device has accepted from the ISO7816 (phoenix) interface. Data
is read through the hardware uart with the baud-rate and properties specified in
the INFSMART_Phoenix_Enable function.
Phoenix mode has to be enabled using INFSMART_Phoenix_Enable prior to this
function.
The device has a 256 bytes phoenix receive buffer, do not request more data than
256 bytes at a time from the ISO7816 interface, before you read the buffer. If
256 bytes are not enough to receive the requested data, make sure to call
INFSMART_Phoenix_Read continuously as this will copy data from the device’s
receive buffer to the SDK’s receive buffer which is 10KB.

The function reads the specified number of bytes into the specified buffer and
retrieves the number of bytes read. Given valid input parameters, this function
is always blocking until the specified number of bytes is available. Use
INFSMART_Phoenix_BytesInFifo, prior to calling this function to make sure the
requested bytes are actually ready to be read.

Prototype:
SDK_STATUS INFSMART_Phoenix_Read(HANDLE hDevice, LPVOID lpBuffer,DWORD
nNumberOfBytesToRead, LPDWORD lpdwBytesRead);

Parameters:

1. hDevice: Handle of the device.
2. lpBuffer: Address of a buffer to receive the data.
3. nNumberOfBytesToRead: Number of bytes to read from the device (0-64Kbytes)
4. lpdwBytesRead: Address of a DWORD which will contain the number of bytes

actually read from the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_READ_ERROR (0x02) or
SDK_INVALID_REQUEST_LENGTH (0x07) or
SDK_INVALID_HANDLE (0x01) or
SDK_INVALID_PARAMETER (0x06) or
SDK_PHOENIX_NOT_ENABLED (0x60)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 11 of 22

INFSMART_Phoenix_SetRST
Sets the RST (reset) pin of the card connector to the specified state.

Prototype:
SDK_STATUS INFSMART_Phoenix_SetRST(HANDLE hDevice, unsigned int state);

Parameters:

1. hDevice: Handle of the device.
2. state: Specifies the state of the reset pin, set to 1 to set the card in

reset state, and 0 the set the card out of reset state.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_PHOENIX_NOT_ENABLED (0x60)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 12 of 22

INFSMART_Phoenix_ResetCard
Flushes the phoenix receive buffer, then sets the RST (reset) pin state low (in-
reset), waits, then sets the RST high again (out-reset). Under normal
circumstances you should use the INFSMART_Phoenix_Read afterwards to read the
ATR that usually follows a card-reset from the card. Use the
INFSMART_Phoenix_BytesInFifo function to determine the size of the ATR to read.

Prototype:
SDK_STATUS INFSMART_Phoenix_ResetCard(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_PHOENIX_NOT_ENABLED (0x60)

INFSMART_Phoenix_BytesInFifo
Returns the number of bytes ready to be read from the phoenix read buffer.

Prototype:
DWORD INFSMART_Phoenix_BytesInFifo(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
Number of bytes ready to be read from the phoenix read buffer.

INFSMART_Phoenix_EmptyFifo
Flushes the phoenix receivebuffer.

Prototype:
SDK_STATUS INFSMART_Phoenix_EmptyFifo(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_PHOENIX_NOT_ENABLED (0x60)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 13 of 22

INFSMART_Phoenix_Trap
Traps a card, by sending the specified command to the card after resetting a
card and delaying for the specified number of microseconds (us). This command
should be used for time critical commands. Typically this command could be used
with TitaniumCard where the delay parameter should be 0x32 (0x32*10 = 500us) and
Trapvalue should be 0x55.

The sequence this commands carries out is as follows:

1. Set reset
2. Clear reset
3. Wait ‘Delay’*10 us
4. Send ‘Trapvalue’ command through phoenix

Prototype:
SDK_STATUS INFSMART_Phoenix_Trap(HANDLE hDevice, unsigned char Delay, unsigned
char Trapvalue);

Parameters:

1. hDevice: Handle of the device.
2. Delay: Specifies the delay in us*10 (Delay = 50, equals 500us), between

resetting the card and sending the command.
3. Trapvalue: The command to send after the delay.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_PHOENIX_NOT_ENABLED (0x60)

INFSMART_Phoenix_TrapDelay
This function is identical to the INFSMART_Phoenix_Trap, but it delays for the
specified number of milliseconds before returning from trapping.

Prototype:
SDK_STATUS INFSMART_Phoenix_TrapDelay(HANDLE hDevice, unsigned char Delay,
unsigned char Trapvalue, DWORD dwSleep);
Parameters:

1. hDevice: Handle of the device.
2. Delay: Specifies the delay in us*10 (Delay = 50, equals 500us), between

resetting the card and sending the command.
3. Trapvalue: The command to send after the delay.
4. dwSleep: Specifies the delay the function waits before it returns.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_PHOENIX_NOT_ENABLED (0x60)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 14 of 22

INFSMART_Phoenix_BreakTrap
Traps a card, by sending the specified command to the card after resetting a
card and delaying for the specified number of ms. This command should be used
for time critical commands where the communications line should be in a break-
state before the card is out of reset. Typically this command could be used with
KnotCard where the delay parameter should be 0x28 (0x28*10 = 400ms) and
Trapvalue should be 0x57.

The sequence this commands carries out is as follows:

1. Set reset
2. Set communications state to break-state.
3. Clear reset
4. Wait ‘Delay’*10 MS
5. Send ‘Trapvalue’ command through phoenix

Prototype:
SDK_STATUS INFSMART_Phoenix_BreakTrap(HANDLE hDevice, unsigned char Delay,
unsigned char Trapvalue);

Parameters:

1. hDevice: Handle of the device.
2. Delay: Specifies the delay in ms*10 (Delay = 50, equals 500ms), between

resetting the card and sending the command.
3. Trapvalue: The command to send after the delay.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_PHOENIX_NOT_ENABLED (0x60)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 15 of 22

Communications

INFSMART_Write
Writes the specified number of bytes from the specified buffer to the specified
device. Given valid parameters, this function is blocking until the write is
successful, fails, or a timeout occurs. The write is
successful when the device has accepted all of the data. If the write fails or a
timeout occurs, SDK_WRITE_ERROR is returned (see INFSMART_SetTimeouts).

Prototype:
SDK_STATUS INFSMART_Write(HANDLE hDevice, LPCVOID lpBuffer, DWORD
nNumberOfBytesToWrite, LPDWORD lpdwBytesWritten);

Parameters:

1. hDevice: Handle of the device.
2. lpBuffer: Address of a buffer of data to write.
3. nNumberOfBytesToWrite: Number of bytes to write to the device (0-4096

bytes)
4. lpdwBytesWritten: Address of a DWORD which will contain the number of

bytes actually written to the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_WRITE_ERROR (0x04) or
SDK_INVALID_REQUEST_LENGTH (0x07) or
SDK_INVALID_HANDLE (0x01) or
SDK_INVALID_PARAMETER (0x06)

INFSMART_Read
Reads the specified number of bytes into the specified buffer and retrieves the
number of bytes read. Given valid input parameters, this function is blocking
until the specified number of bytes
become available or a timeout occurs (see INFSMART_SetTimeouts).

Prototype:
SDK_STATUS INFSMART_Read(HANDLE hDevice, LPVOID lpBuffer, DWORD
nNumberOfBytesToRead, LPDWORD lpdwBytesRead);

Parameters:

1. hDevice: Handle of the device.
2. lpBuffer: Address of a buffer to receive the data.
3. nNumberOfBytesToRead: Number of bytes to read from the device (0-64Kbytes)
4. lpdwBytesRead: Address of a DWORD which will contain the number of bytes

actually read from the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_READ_ERROR (0x02) or
SDK_INVALID_REQUEST_LENGTH (0x07) or
SDK_INVALID_HANDLE (0x01) or
SDK_INVALID_PARAMETER (0x06) or
SDK_RX_QUEUE_NOT_READY (0x03)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 16 of 22

INFSMART_BytesInFifo
Returns the number of bytes ready to be read from the internal buffer.

Prototype:
DWORD INFSMART_BytesInFifo(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
Number of bytes ready to be read.

INFSMART_EmptyFifo
Flushes the internal receivebuffer and the transmitbuffer of the device.

Prototype:
SDK_STATUS INFSMART_EmptyFifo(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_INVALID_HANDLE (0x01) or
SDK_DEVICE_IO_FAILED (0x08)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 17 of 22

Synchronous communications

SDK_STATUS INFSMART_SynchronousBegin
Powers on the card, and resets the card ready for reading the ATR.

Prototype:
SDK_STATUS INFSMART_SynchronousBegin(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousEnd
Powers down the card and ends synchronous communications.

Prototype:
SDK_STATUS INFSMART_SynchronousEnd(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousProcess
Clocks CLK until IO changes state to the value specified by iostate.

Prototype:
SDK_STATUS INFSMART_SynchronousProcess(HANDLE hDevice, unsigned char iostate);

Parameters:

1. hDevice: Handle of the device.
2. Iostate: The state of the IO line, when CLK should stop

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousWriteCommand
Writes command, address and data to the card.

Prototype:
SDK_STATUS INFSMART_SynchronousWriteCommand(HANDLE hDevice, unsigned char
control, unsigned char adr, unsigned char data);

Parameters:

1. hDevice: Handle of the device.
2. Control: The control byte

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 18 of 22

3. Adr : The address
4. Data : The data to send

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousWriteOneByteLSB
Synchronously clocks out one byte LSB first.

Prototype:
SDK_STATUS INFSMART_SynchronousWriteOneByteLSB(HANDLE hDevice, unsigned char
data);

Parameters:

1. hDevice: Handle of the device.
2. Data : Data byte to clock out

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousWriteOneByteMSB
Synchronously clocks out one byte MSB first.

Prototype:
SDK_STATUS INFSMART_SynchronousWriteOneByteMSB(HANDLE hDevice, unsigned char
data);

Parameters:

1. hDevice: Handle of the device.
2. Data : Data byte to clock out

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousCycleClock
Cycles CLK one time.

Prototype:
SDK_STATUS INFSMART_SynchronousCycleClock(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 19 of 22

SDK_STATUS INFSMART_SynchronousRead8bit
Reads count amount of 8bits data.

Prototype:
SDK_STATUS INFSMART_SynchronousRead8bit(HANDLE hDevice,unsigned char count,
unsigned char* data);
Parameters:

1. hDevice: Handle of the device.
2. Count : The number of bytes to read
3. Data : Pointer to buffer to store the data

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousReadXbytesYbits
Reads ‘bytecount’ amount of bytes with ‘bitcount’ amount of bits in each byte.
‘Bitcount’ should be less than or equal to 8bits. For reading 9 or 10 bits,
combine SynchronousRead8bit and SynchronousReadXbytesYbits.

Prototype:
SDK_STATUS INFSMART_SynchronousReadXbytesYbits(HANDLE hDevice,unsigned char
bytecount, unsigned char bitcount, unsigned char* data);

Parameters:

1. hDevice: Handle of the device.
2. Bytecount : The amount of bytes to read
3. Bitcount : The amount of bits in each byte

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_SynchronousSetRST
Sets RST to the desired state.

Prototype:
SDK_STATUS INFSMART_SynchronousSetRST(HANDLE hDevice, unsigned char state);

Parameters:

1. hDevice: Handle of the device.
2. State : The state of RST, low or high.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 20 of 22

I2C communications

SDK_STATUS INFSMART_IICClockOutStart
Clocks out I2C start condition.

Prototype:
SDK_STATUS INFSMART_IICClockOutStart(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_IICClockOutStop
Clocks out I2C stop condition.

Prototype:
SDK_STATUS INFSMART_IICClockOutStop(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_IICClockOutByte
Clocks out one byte.

Prototype:
SDK_STATUS INFSMART_IICClockOutByte(HANDLE hDevice, unsigned char data);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_IICClockInByteAck
Clock in one byte with acknowledge.

Prototype:
SDK_STATUS INFSMART_IICClockInByteAck(HANDLE hDevice, unsigned char *data);

Parameters:

1. hDevice: Handle of the device.
2. Data : Pointer to buffer, to receive data.

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 21 of 22

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_IICClockInByteNack
Clock in one byte without acknowledge.

Prototype:
SDK_STATUS INFSMART_IICClockInByteNack(HANDLE hDevice, unsigned char *data);

Parameters:

1. hDevice: Handle of the device.
2. Data : Pointer to buffer, to receive data.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

SDK_STATUS INFSMART_IICCycleClock
Cycles CLK one time.

Prototype:
SDK_STATUS INFSMART_IICCycleClock(HANDLE hDevice);

Parameters:

1. hDevice: Handle of the device.

Return values:
SDK_STATUS =
SDK_SUCCESS (0x00) or
SDK_DEVICE_IO_FAILED (0x08)

 - INFINITY® USB SMART - SDK 1.00 - 30-03-2009 – Rev. 1.0 - © 2008

Page 22 of 22

Version history

Rev. 1.0 30.03.2009 First public release

